Abstract
AbstractFor an integer $$p\ge 2$$
p
≥
2
, let $$\{x_n\}_{n\in {\mathbb {N}}}\subset {\mathbb {T}}$$
{
x
n
}
n
∈
N
⊂
T
be the p-adic van der Corput sequence. For intervals $$[0,\alpha )\subset {\mathbb {T}}$$
[
0
,
α
)
⊂
T
and for positive integers N, consider the geometrically-shifted discrepancy function $$D_{p,N,\alpha }(t)=\sum _{n=0}^{N-1}\mathcal {X}_{[0,\alpha )}(x_n+t)-N\alpha $$
D
p
,
N
,
α
(
t
)
=
∑
n
=
0
N
-
1
X
[
0
,
α
)
(
x
n
+
t
)
-
N
α
. In this paper, we give a characterization of the asymptotic behavior of $$\Vert D_{p,N,\alpha }(\cdot )\Vert _{L^2({\mathbb {T}})}$$
‖
D
p
,
N
,
α
(
·
)
‖
L
2
(
T
)
for $$N\rightarrow \infty $$
N
→
∞
that depends on the p-adic expansion of $$\alpha $$
α
.
Funder
Università degli Studi di Milano - Bicocca
Publisher
Springer Science and Business Media LLC