Author:
Brenner Sofia,García-Lucas Diego
Abstract
AbstractLet p be an odd prime number. We show that the modular isomorphism problem has a positive answer for finite p-groups whose center has index $$p^3$$
p
3
, which is a strong contrast to the analogous situation for $$p = 2$$
p
=
2
.
Funder
H2020 European Research Council
Fundación Séneca
Ministerio de Ciencia e Innovación
Technische Universität Darmstadt
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Bagiński, C.: The isomorphism question for modular group algebras of metacyclic $$p$$-groups. Proc. Amer. Math. Soc. 104(1), 39–42 (1988)
2. Bagiński, C.: On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic $$p$$-groups. Colloq. Math. 82(1), 125–136 (1999)
3. Bagiński, C., Kurdics, J.: The modular group algebras of $$p$$-groups of maximal class II. Comm. Algebra 47(2), 761–771 (2019)
4. Beyl, F.R., Felgner, U., Schmid, P.: On groups occurring as center factor groups. J. Algebra 61(1), 161–177 (1979)
5. Deskins, W.E.: Finite Abelian groups with isomorphic group algebras. Duke Math. J. 23, 35–40 (1956)