All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics

Author:

Xu Xiaoyang,Zhang Jia,Zhang Zihao,Lu Guandan,Cao Wei,Wang Ning,Xia Yunmeng,Feng Qingliang,Qiao Shanlin

Abstract

AbstractFree-standing covalent organic framework (COFs) nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li+ in lithium-ion batteries, while simultaneously exposing affluent active sites in supercapacitors. The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors (LICs). Herein, for the first time, custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode, respectively, for an all-COF nanofilm-structured LIC. The COFBTMB-TP nanofilm with strong electronegative–CF3 groups enables tuning the partial electron cloud density for Li+ migration to ensure the rapid anode kinetic process. The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity. Due to the aligned 1D channel, 2D aromatic skeleton and accessible active sites of COF nanofilms, the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm−3 at a high-power density of 6 W cm−3, excellent rate capability, good cycle stability with the capacity retention rate of 77% after 5000-cycle. The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors. After being comprehensively explored via ex situ XPS, 7Li solid-state NMR analyses, and DFT calculation, it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C–F bonds during lithium storage. COFBTMB-TP exhibits a strong interaction with Li+ due to the C–F, C=O, and C–N bonds, facilitating Li+ desolation and absorption from the electrolyte. This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3