A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications

Author:

Zhang Tao,Li Cheng-Hui,Li Wenbo,Wang Zhen,Gu Zhongya,Li Jiapu,Yuan Junru,Ou-Yang Jun,Yang Xiaofei,Zhu Benpeng

Abstract

AbstractCompared with traditional piezoelectric ultrasonic devices, optoacoustic devices have unique advantages such as a simple preparation process, anti-electromagnetic interference, and wireless long-distance power supply. However, current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency, which seriously hinder their widespread applications. In this study, using a self-healing polydimethylsiloxane (PDMS, Fe-Hpdca-PDMS) and carbon nanotube composite, a flexible optoacoustic patch is developed, which possesses the self-healing capability at room temperature, and can even recover from damage induced by cutting or laser irradiation. Moreover, this patch can generate high-intensity ultrasound (> 25 MPa) without the focusing structure. The laser damage threshold is greater than 183.44 mJ cm−2, and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66 × 10−3, compared with other carbon-based nanomaterials and PDMS composites. This patch is also been successfully examined in the application of acoustic flow, thrombolysis, and wireless energy harvesting. All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3