Author:
Liu Heng,Lu Zhengyu,Zhang Weihai,Zhou Hongkang,Xia Yu,Shi Yueqing,Wang Junwei,Chen Rui,Xia Haiping,Wang Hsing-Lin
Abstract
AbstractFor the further improvement of the power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs), the buried interface between the perovskite and the electron transport layer is crucial. However, it is challenging to effectively optimize this interface as it is buried beneath the perovskite film. Herein, we have designed and synthesized a series of multifunctional organic–inorganic (OI) complexes as buried interfacial material to promote electron extraction, as well as the crystal growth of the perovskite. The OI complex with BF4− group not only eliminates oxygen vacancies on the SnO2 surface but also balances energy level alignment between SnO2 and perovskite, providing a favorable environment for charge carrier extraction. Moreover, OI complex with amine (− NH2) functional group can regulate the crystallization of the perovskite film via interaction with PbI2, resulting in highly crystallized perovskite film with large grains and low defect density. Consequently, with rational molecular design, the PSCs with optimal OI complex buried interface layer which contains both BF4− and −NH2 functional groups yield a champion device efficiency of 23.69%. More importantly, the resulting unencapsulated device performs excellent ambient stability, maintaining over 90% of its initial efficiency after 2000 h storage, and excellent light stability of 91.5% remaining PCE in the maximum power point tracking measurement (under continuous 100 mW cm−2 light illumination in N2 atmosphere) after 500 h.
Funder
Shanghai Jiao Tong University
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献