On the Philosophy of Unsupervised Learning

Author:

Watson David S.ORCID

Abstract

AbstractUnsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and ontological questions, providing data-driven tools for discovering natural kinds and distinguishing essence from contingency. This analysis goes some way toward filling the lacuna in contemporary philosophical discourse on unsupervised learning, as well as bringing conceptual unity to a heterogeneous field more often described by what it isnot(i.e., supervised or reinforcement learning) than by what itis. I submit that unsupervised learning is not just a legitimate subject of philosophical inquiry but perhaps the most fundamental branch of all AI. However, an uncritical overreliance on unsupervised methods poses major epistemic and ethical risks. I conclude by advocating for a pragmatic, error-statistical approach that embraces the opportunities and mitigates the challenges posed by this powerful class of algorithms.

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Philosophy

Reference119 articles.

1. Abboud, A., Cohen-Addad, V., & Houdrouge, H. (2019). Subquadratic high-dimensional hierarchical clustering. Advances in Neural Information Processing Systems (Vol. 32).

2. Ackerman, M. & Ben-David, S. (2009). Clusterability: A theoretical analysis. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics.

3. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

4. Bandyopadhyay, P. S., & Boik, R. J. (1999). The curve fitting problem: A Bayesian rejoinder. Philosophy of Science, 66(S3), S390–S402.

5. Barrett, J. A., Skyrms, B., & Mohseni, A. (2019). Self-assembling networks. The British Journal for the Philosophy of Science, 70(1), 301–325.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3