Development of an LC–MS/MS method for the determination of five psychoactive drugs in postmortem urine by optimization of enzymatic hydrolysis of glucuronide conjugates

Author:

Matsuo TomohitoORCID,Ogawa Tadashi,Iwai Masae,Kubo Katsutoshi,Kondo Fumio,Seno Hiroshi

Abstract

Abstract Purpose Toxicological analyses of biological samples play important roles in forensic and clinical investigations. Ingested drugs are excreted in urine as conjugates with endogenous substances such as glucuronic acid; hydrolyzing these conjugates improves the determination of target drugs by liquid chromatography–tandem mass spectrometry (LC–MS/MS). In this study, we sought to improve the enzymatic hydrolysis of glucuronide conjugates of five psychoactive drugs (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, oxazepam, lorazepam, temazepam, and amitriptyline). Methods The efficiency of enzymatic hydrolysis of glucuronide conjugates in urine was optimized by varying temperature, enzyme volume, and reaction time. The hydrolysis was performed directly on extraction columns. This analysis method using LC–MS/MS was applied to forensic autopsy samples after thorough validation. Results We found that the recombinant β-glucuronidase B-One® quantitatively hydrolyzed these conjugates within 3 min at room temperature directly on extraction columns. This on-column method saved time and eliminated the loss of valuable samples during transfer to the extraction column. LC–MS/MS-based calibration curves processed with this method showed good linearity, with r2 values exceeding 0.998. The intra- and inter-day accuracies and precisions of the method were 93.0–109.7% and 0.8–8.8%, respectively. The recovery efficiencies were in the range of 56.1–104.5%. Matrix effects were between 78.9 and 126.9%. Conclusions We have established an LC–MS/MS method for five psychoactive drugs in urine after enzymatic hydrolysis of glucuronide conjugates directly on extraction columns. The method was successfully applied to forensic autopsy samples. The established method will have broad applications, including forensic and clinical toxicological investigations.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3