A deep embedded refined clustering approach for breast cancer distinction based on DNA methylation

Author:

Amor Rocío delORCID,Colomer Adrián,Monteagudo Carlos,Naranjo Valery

Abstract

AbstractEpigenetic alterations have an important role in the development of several types of cancer. Epigenetic studies generate a large amount of data, which makes it essential to develop novel models capable of dealing with large-scale data. In this work, we propose a deep embedded refined clustering method for breast cancer differentiation based on DNA methylation. In concrete, the deep learning system presented here uses the levels of CpG island methylation between 0 and 1. The proposed approach is composed of two main stages. The first stage consists in the dimensionality reduction of the methylation data based on an autoencoder. The second stage is a clustering algorithm based on the soft assignment of the latent space provided by the autoencoder. The whole method is optimized through a weighted loss function composed of two terms: reconstruction and classification terms. To the best of the authors’ knowledge, no previous studies have focused on the dimensionality reduction algorithms linked to classification trained end-to-end for DNA methylation analysis. The proposed method achieves an unsupervised clustering accuracy of 0.9927 and an error rate (%) of 0.73 on 137 breast tissue samples. After a second test of the deep-learning-based method using a different methylation database, an accuracy of 0.9343 and an error rate (%) of 6.57 on 45 breast tissue samples are obtained. Based on these results, the proposed algorithm outperforms other state-of-the-art methods evaluated under the same conditions for breast cancer classification based on DNA methylation data.

Funder

Horizon 2020 Framework Programme

Ministerio de Economía y Competitividad

Generalitat Valenciana

Universidad Politècnica de València

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3