COVID-19 classification based on a deep learning and machine learning fusion technique using chest CT images

Author:

Salama Gerges M.,Mohamed Asmaa,Abd-Ellah Mahmoud KhaledORCID

Abstract

AbstractCoronavirus disease (COVID-19), impacted by SARS-CoV-2, is one of the greatest challenges of the twenty-first century. COVID-19 broke out in the world over the last 2 years and has caused many injuries and killed persons. Computer-aided diagnosis has become a necessary tool to prevent the spreading of this virus. Detecting COVID-19 at an early stage is essential to reduce the mortality risk of patients. Researchers seek to find rapid solutions based on techniques of Machine Learning and Deep Learning. In this paper, we introduced a hybrid model for COVID-19 detection based on machine learning and deep learning models. We used 10 different deep CNN network models to extract features from CT images. We extract features from different layers in each network and find the optimum layer that gives the best-extracted features for each CNN network. Then, for classifying these features, we used five different classifiers based on machine learning. The dataset consists of 2481 CT images divided into COVID-19 and non-COVID-19 categories. Three folds are extracted with a different size between testing and training. Through experiments, we define the best layer for all used CNN networks, the best network, and the best-used classifier. The measured performance shows the superiority of the proposed system over the literature with a highest accuracy of 99.39%. Our models are tested with the three folds that gained maximum average accuracy. The result is 98.69%.

Funder

Egyptian Russian University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3