Abstract
AbstractThe heat exchanger has been widely used in the energy and chemical industry and plays an irreplaceable role in the featured applications. The design of heat exchanger is a mixed integer complex optimization problem, where the efficient design significantly improves the efficiency and reduces the cost. Many intelligent methods have been developed for heat exchanger optimal design. In this paper, a novel variant of sine and cosine algorithm named EDOLSCA is proposed, enhanced by dynamic opposite learning algorithm and the elite strategy. The proposed method is tested in CEC2014 benchmark and proved to be of significant advantages over the original algorithm. The new algorithm is then validated in the plate-fin heat exchanger (PFHE) optimal design problem. The comparison results of the proposed algorithm and other algorithms prove that EDOLSCA also has demonstrated superiority in heat exchanger optimal design.
Funder
National Key Research and Development Project under Grant
National Natural Science Foundation of China
National Natural Science Foundation of Guangdong
Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献