Hybrid deep learning diagonal recurrent neural network controller for nonlinear systems

Author:

El-Nagar Ahmad M.ORCID,Zaki Ahmad M.,Soliman F. A. S.,El-Bardini Mohammad

Abstract

AbstractIn the present paper, a hybrid deep learning diagonal recurrent neural network controller (HDL-DRNNC) is proposed for nonlinear systems. The proposed HDL-DRNNC structure consists of a diagonal recurrent neural network (DRNN), whose initial values can be obtained through deep learning (DL). The DL algorithm, which is used in this study, is a hybrid algorithm that is based on a self-organizing map of the Kohonen procedure and restricted Boltzmann machine. The updating weights of the DRNN of the proposed algorithm are developed using the Lyapunov stability criterion. In this concern, simulation tasks such as disturbance signals and parameter variations are performed on mathematical and physical systems to improve the performance and the robustness of the proposed controller. It is clear from the results that the performance of the proposed controller is better than other existent controllers.

Funder

Minufiya University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying the Complexity of Stock Price Prediction Using Regression Complexity Measures;Advances in Finance, Accounting, and Economics;2024-08-30

2. Applying machine learning algorithms to predict the stock price trend in the stock market – The case of Vietnam;Humanities and Social Sciences Communications;2024-03-12

3. Comparison of artificial neural network adaptive control techniques for a nonlinear system with delay;2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR);2023-08-22

4. A novel locally connected recurrent neural network for identification of nonlinear dynamical system;2023 10th International Conference on Signal Processing and Integrated Networks (SPIN);2023-03-23

5. Neural Network Based Approach for Steady-State Stability Assessment of Power Systems;Sustainability;2023-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3