Novel hybrid informational model for predicting the creep and shrinkage deflection of reinforced concrete beams containing GGBFS

Author:

Faridmehr Iman,Shariq Mohd,Plevris VagelisORCID,Aalimahmoody Nasrin

Abstract

AbstractThis study investigates a Novel Hybrid Informational model for the prediction of creep and shrinkage deflection of reinforced concrete (RC) beams containing different percentages of ground granulated blast furnace slag (GGBFS) at different ages, varying from 1 to 150 days. The percentage of cement replacement by GGBFS varies from 20 to 60%. In order to examine the effects of the applied load and tensile reinforcement on creep behavior, the magnitude of two-point loading was varied from 200 kg to a maximum of 350 kg while the percentage of tensile reinforcement (ρ) was selected as either 0.77% or 1.2%. The current situation about short-term and long-term deflections due to creep and shrinkage available in the international standards, including ACI, BS and Eurocode 2, is discussed. The results indicate that RC beams containing GGBFS have larger deflections than the ones with conventional concrete (i.e., ordinary Portland cement concrete). After 150 days, the average creep deflection of RC beams containing 20, 40, and 60% GGBFS was 30, 70, and 100% higher than the ones for conventional concrete beams, respectively. A hybrid artificial neural network coupled with a metaheuristic Whale optimization algorithm has been developed to estimate the overall deflection of concrete beams due to creep and shrinkage. Several statistical metrics, including the root mean square error and the coefficient of variation, revealed that the generalized model achieved the most reliable and accurate prediction of the concrete beam’s deflection in comparison with international standards and other models. This novel informational model can simplify the design processes in computational intelligence structural design platforms in future.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3