Deep learning to detect botnet via network flow summaries
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/content/pdf/10.1007/s00521-018-3595-x.pdf
Reference55 articles.
1. ARGUS-Auditing Network Activity. https://qosient.com/argus/ . Accessed: 06 Oct 2017
2. Alauthaman M, Aslam N, Zhang L, Alasem R, Hossain MA (2016) A P2P botnet detection scheme based on decision tree and adaptive multilayer neural networks. Neural Comput Appl 29:991–1004
3. Alejandre FV, Cortés NC, Anaya EA (2017) Feature selection to detect botnets using machine learning algorithms. In: International conference on electronics, communications and computers (CONIELECOMP). IEEE, pp 1–7
4. Andriesse D, Rossow C, Stone-Gross B, Plohmann D, Bos H (2013) Highly resilient peer-to-peer botnets are here: An analysis of gameover zeus. In: 2013 8th international conference on malicious and unwanted software: “the Americas” (MALWARE). IEEE, pp 116–123
5. Bou-Harb E, Debbabi M, Assi C (2017) Big data behavioral analytics meet graph theory: on effective botnet takedowns. IEEE Netw 31(1):18–26
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advancing Network Security in Industrial IoT: A Deep Dive into AI-Enabled Intrusion Detection Systems;Advanced Engineering Informatics;2024-10
2. Artificial intelligence-based approach to detect malicious users using deep learning and optimization techniques;Multimedia Tools and Applications;2024-08-16
3. Classification of DDoS attack traffic on SDN network environment using deep learning;Cybersecurity;2024-08-02
4. Enhancing DeCrypto: Finding Cryptocurrency Miners Based on Periodic Behavior;2023 19th International Conference on Network and Service Management (CNSM);2023-10-30
5. A Deep Intrusion Detection Model for Network Traffic Payload Analysis;2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM);2023-09-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3