Cloud customers service selection scheme based on improved conventional cat swarm optimization

Author:

Gabi Danlami,Ismail Abdul Samad,Zainal Anazida,Zakaria Zalmiyah,Abraham Ajith,Dankolo Nasiru Muhammed

Abstract

AbstractWith growing demand on resources situated at the cloud datacenters, the need for customers’ resource selection techniques becomes paramount in dealing with the concerns of resource inefficiency. Techniques such as metaheuristics are promising than the heuristics, most especially when handling large scheduling request. However, addressing certain limitations attributed to the metaheuristic such as slow convergence speed and imbalance between its local and global search could enable it become even more promising for customers service selection. In this work, we propose a cloud customers service selection scheme called Dynamic Multi-Objective Orthogonal Taguchi-Cat (DMOOTC). In the proposed scheme, avoidance of local entrapment is achieved by not only increasing its convergence speed, but balancing between its local and global search through the incorporation of Taguchi orthogonal approach. To enable the scheme to meet customers’ expectations, Pareto dominant strategy is incorporated providing better options for customers in selecting their service preferences. The implementation of our proposed scheme with that of the benchmarked schemes is carried out on CloudSim simulator tool. With two scheduling scenarios under consideration, simulation results show for the first scenario, our proposed DMOOTC scheme provides better service choices with minimum total execution time and cost (with up to 42.87%, 35.47%, 25.49% and 38.62%, 35.32%, 25.56% reduction) and achieves 21.64%, 18.97% and 13.19% improvement for the second scenario in terms of execution time compared to that of the benchmarked schemes. Similarly, statistical results based on 95% confidence interval for the whole scheduling scheme also show that our proposed scheme can be much more reliable than the benchmarked scheme. This is an indication that the proposed DMOOTC can meet customers’ expectations while providing guaranteed performance of the whole cloud computing environment.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3