Dual-channel spatial–temporal difference graph neural network for PM$$_{2.5}$$ forecasting
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-022-08036-0.pdf
Reference40 articles.
1. Guan W-J, Zheng X-Y, Chung KF, Zhong N-S (2016) Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. The Lancet 388(10054):1939–1951. https://doi.org/10.1016/S0140-6736(16)31597-5
2. Wang S, Li Y, Zhang J, Meng Q, Meng L, Gao F (2020) Pm2.5-gnn: A domain knowledge enhanced graph neural network for pm2.5 forecasting. In: Proceedings of the 28th international conference on advances in geographic information systems. SIGSPATIAL ’20, pp 163–166. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3397536.3422208
3. Qi Y, Li Q, Karimian H, Liu D (2019) A hybrid model for spatiotemporal forecasting of pm2.5 based on graph convolutional neural network and long short-term memory. Sci Total Environ 664:1–10. https://doi.org/10.1016/j.scitotenv.2019.01.333
4. Sun W, Sun J (2017) Daily pm2.5 concentration prediction based on principal component analysis and lssvm optimized by cuckoo search algorithm. J Environ Manage 188:144–152. https://doi.org/10.1016/j.jenvman.2016.12.011
5. Lin Y, Mago N, Gao Y, Li Y, Chiang Y-Y, Shahabi C, Ambite JL (2018) Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning. In: Proceedings of the 26th ACM SIGSPATIAL international conference on advances in geographic information systems. SIGSPATIAL ’18, pp 359–368. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3274895.3274907
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep-learning architecture for PM2.5 concentration prediction: A review;Environmental Science and Ecotechnology;2024-09
2. CityTrans: Domain-Adversarial Training With Knowledge Transfer for Spatio-Temporal Prediction Across Cities;IEEE Transactions on Knowledge and Data Engineering;2024-01
3. Adaptive scalable spatio-temporal graph convolutional network for PM2.5 prediction;Engineering Applications of Artificial Intelligence;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3