Long-term missing value imputation for time series data using deep neural networks

Author:

Park Jangho,Müller JulianeORCID,Arora Bhavna,Faybishenko Boris,Pastorello Gilberto,Varadharajan Charuleka,Sahu Reetik,Agarwal Deborah

Abstract

AbstractWe present an approach that uses a deep learning model, in particular, a MultiLayer Perceptron, for estimating the missing values of a variable in multivariate time series data. We focus on filling a long continuous gap (e.g., multiple months of missing daily observations) rather than on individual randomly missing observations. Our proposed gap filling algorithm uses an automated method for determining the optimal MLP model architecture, thus allowing for optimal prediction performance for the given time series. We tested our approach by filling gaps of various lengths (three months to three years) in three environmental datasets with different time series characteristics, namely daily groundwater levels, daily soil moisture, and hourly Net Ecosystem Exchange. We compared the accuracy of the gap-filled values obtained with our approach to the widely used R-based time series gap filling methods and . The results indicate that using an MLP for filling a large gap leads to better results, especially when the data behave nonlinearly. Thus, our approach enables the use of datasets that have a large gap in one variable, which is common in many long-term environmental monitoring observations.

Funder

Lawrence Berkeley National Lab LDRD

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing groundwater level prediction accuracy using interpolation techniques in deep learning models;Groundwater for Sustainable Development;2024-08

2. Risk factor aggregation and stress testing;Quantitative Finance;2024-07-25

3. Improving Time-Series Forecasting Performance Using Imputation Techniques in Deep Learning;2024 International Conference on Smart Computing, IoT and Machine Learning (SIML);2024-06-06

4. Enhancing Sensor Data Imputation: OWA-Based Model Aggregation for Missing Values;Future Internet;2024-05-31

5. Interpolation of environmental data using deep learning and model inference;Machine Learning: Science and Technology;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3