Comparing the performance of Hebbian against backpropagation learning using convolutional neural networks
Author:
Funder
H2020 project AI4EU
H2020 project AI4Media
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-021-06701-4.pdf
Reference39 articles.
1. Amato G, Carrara F, Falchi F, Gennaro C, Lagani G (2019) Hebbian learning meets deep convolutional neural networks. In: International conference on image analysis and processing. Springer, pp 324–334
2. Bahroun Y, Soltoggio A (2017) Online representation learning with single and multi-layer hebbian networks for image classification. In: International conference on artificial neural networks. Springer, pp 354–363
3. Becker S, Plumbley M (1996) Unsupervised neural network learning procedures for feature extraction and classification. Appl Intell 6(3):185–203
4. Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci 9:99
5. Ferré P, Mamalet F, Thorpe SJ (2018) Unsupervised feature learning with winner-takes-all based stdp. Front Comput Neurosci 12:24
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scalable bio-inspired training of Deep Neural Networks with FastHebb;Neurocomputing;2024-08
2. Soft kind of Computing Based Least Resource Data finding which is Used for Analysis purpose;2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2024-05-14
3. Automatic melanoma detection using discrete cosine transform features and metadata on dermoscopic images;Journal of King Saud University - Computer and Information Sciences;2024-02
4. Associative Interpretability of Hidden Semantics with Contrastiveness Operators in Face Classification Tasks;Communications in Computer and Information Science;2024
5. Unsupervised Representation Learning with Hebbian Synaptic and Structural Plasticity in Brain-Like Feedforward Neural Networks;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3