Investigation of topographic site effects using 3D waveform modelling: amplification, polarization and torsional motions in the case study of Arquata del Tronto (Italy)

Author:

Baron JulieORCID,Primofiore IlariaORCID,Klin PeterORCID,Vessia GiovannaORCID,Laurenzano GiovannaORCID

Abstract

AbstractThe combined effect of topography and near-surface heterogeneities on the seismic response is hardly predictable and may lead to an aggravation of the ground motion. We apply physics-based numerical simulations of 3D seismic wave propagation to highlight these effects in the case study of Arquata del Tronto, a municipality in the Apennines that includes a historical village on a hill and a hamlet on the flat terrain of an alluvial basin. The two hamlets suffered different damage during the 2016 seismic sequence in Central Italy. We analyze the linear visco-elastic seismic response for vertically incident plane waves in terms of spectral amplification, polarization and induced torsional motion within the frequency band 1–8 Hz over a 1 km2 square area, with spatial resolution 25 m. To discern the effects of topography from those of the sub-surface structure we iterate the numerical simulations for three different versions of the sub-surface model: one homogeneous, one with a surficial weathering layer and a soil basin and one with a complex internal setting. The numerical results confirm the correlation between topographic curvature and amplification and support a correlation between the induced torsional motion and the topographic slope. On the other hand we find that polarization does not necessarily imply ground motion amplification. In the frequency band above 4 Hz the topography-related effects are mainly aggravated by the presence of the weathering layer, even though they do not exceed the soil-related effects in the flat-topography basin. The geological setting below the weathering layer plays a recognizable role in the topography-related site response only for frequencies below 4 Hz.

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3