Multi-objective optimal design and seismic assessment of an inerter-based hybrid control system for storage tanks

Author:

Zahedin Labaf DanieleORCID,De Angelis Maurizio,Basili Michela

Abstract

AbstractIn this paper, a hybrid control system (HCS) endowing a base isolation system (BIS) with a Tuned Mass Damper Inerter (TMDI) is proposed for the protection of steel storage tanks from severe structural damages induced by seismic events. Among all the components of industrial plants, cylindrical steel storage tanks are widely spread and play a primary role when subjected to seismic hazard, since they suffer of many critical issues related to their dynamic response such as high convective wave height and base shear force. The adopted base isolation system is realized with spring and damper elements, whereas the TMDI is realized with a tuned mass damper connected to the ground by the inerter. The developed mechanical model consists of a MDOF system, which considers the impulsive and convective modes as well as the TMDI dynamics. An optimal design problem is tackled, making use of a multi-objective approach, with the scope to mitigate simultaneously the convective and impulsive response of the storage tank. A zero mean white noise excitation is assumed as input in the optimal design procedure. Once the HCS is optimally designed, a systematic investigation of its seismic effectiveness is reached through parametric analysis. Modal parameters and frequency response functions are discussed. A literature case study comparing the effectiveness of the proposed optimally designed HCS with traditional base isolation is illustrated and performances are assessed through stochastic excitation and natural earthquakes.

Funder

Sapienza Università di Roma

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Reference48 articles.

1. Cohon JL (1978) Multi-objective programming and planning. Academic Press, New York

2. De Angelis M, Giannini R, Paolacci F (2010) Experimental investigation on the seismic response of a steel liquid storage tank equipped with floating roof by shaking table tests. Earthq Eng Struct Dyn 39:377–396

3. De Angelis M, Perno S, Reggio A (2012) Dynamic response and optimal design of structures with large mass ratio TMD. Earthq Eng Struct Dyn 41:41–60

4. De Angelis M, Giaralis A, Petrini F, Pietrosanti D (2019) Optimal tuning and assessment of inertial dampers with grounded inerter for vibration control of seismically excited base-isolated systems. Eng Struct 196:1–19

5. De Domenico D, Ricciardi G (2018) Optimal design and seismic performance of tuned mass damper inerter (TMDI) for structures with nonlinear base isolation systems. Earthq Eng Struct Dyn 47:2539–2560

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3