Fall prediction in neurological gait disorders: differential contributions from clinical assessment, gait analysis, and daily-life mobility monitoring

Author:

Schniepp Roman,Huppert Anna,Decker Julian,Schenkel Fabian,Schlick Cornelia,Rasoul Atal,Dieterich Marianne,Brandt Thomas,Jahn Klaus,Wuehr Max

Abstract

Abstract Objective To evaluate the predictive validity of multimodal clinical assessment outcomes and quantitative measures of in- and off-laboratory mobility for fall-risk estimation in patients with different forms of neurological gait disorders. Methods The occurrence, severity, and consequences of falls were prospectively assessed for 6 months in 333 patients with early stage gait disorders due to vestibular, cerebellar, hypokinetic, vascular, functional, or other neurological diseases and 63 healthy controls. At inclusion, participants completed a comprehensive multimodal clinical and functional fall-risk assessment, an in-laboratory gait examination, and an inertial-sensor-based daily mobility monitoring for 14 days. Multivariate logistic regression analyses were performed to identify explanatory characteristics for predicting the (1) the fall status (non-faller vs. faller), (2) the fall frequency (occasional vs. frequent falls), and (3) the fall severity (benign vs. injurious fall) of patients. Results 40% of patients experienced one or frequent falls and 21% severe fall-related injuries during prospective fall assessment. Fall status and frequency could be reliably predicted (accuracy of 78 and 91%, respectively) primarily based on patients' retrospective fall status. Instrumented-based gait and mobility measures further improved prediction and provided independent, unique information for predicting the severity of fall-related consequences. Interpretation Falls- and fall-related injuries are a relevant health problem already in early stage neurological gait disorders. Multivariate regression analysis encourages a stepwise approach for fall assessment in these patients: fall history taking readily informs the clinician about patients' general fall risk. In patients at risk of falling, instrument-based measures of gait and mobility provide critical information on the likelihood of severe fall-related injuries.

Funder

Bundesministerium für Bildung und Forschung

Else Kröner-Fresenius-Stiftung

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3