Wigner-function-based solution schemes for electromagnetic wave beams in fluctuating media

Author:

Weber HannesORCID,Maj OmarORCID,Poli EmanueleORCID

Abstract

AbstractElectromagnetic waves are described by Maxwell’s equations together with the constitutive equation of the considered medium. The latter equation in general may introduce complicated operators. As an example, for electron cyclotron (EC) waves in a hot plasma, an integral operator is present. Moreover, the wavelength and computational domain may differ by orders of magnitude making a direct numerical solution unfeasible, with the available numerical techniques. On the other hand, given the scale separation between the free-space wavelength $$\lambda _0$$ λ 0 and the scale L of the medium inhomogeneity, an asymptotic solution for a wave beam can be constructed in the limit $$\kappa = 2\pi L / \lambda _0 \rightarrow \infty$$ κ = 2 π L / λ 0 , which is referred to as the semiclassical limit. One example is the paraxial Wentzel-Kramer-Brillouin (pWKB) approximation. However, the semiclassical limit of the wave field may be inaccurate when random short-scale fluctuations of the medium are present. A phase-space description based on the statistically averaged Wigner function may solve this problem. The Wigner function in the semiclassical limit is determined by the wave kinetic equation (WKE), derived from Maxwell’s equations. We present a paraxial expansion of the Wigner function around the central ray and derive a set of ordinary differential equations (phase-space beam-tracing equations) for the Gaussian beam width along the central ray trajectory.

Funder

Max Planck Institute for Plasma Physics (IPP MPG)

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Modeling and Simulation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3