Influence of Flow Configuration and Thermal Wall Boundary Conditions on Turbulence During Premixed Flame-Wall Interaction within Low Reynolds Number Boundary Layers

Author:

Ahmed Umair,Chakraborty Nilanjan,Klein Markus

Abstract

AbstractThe influence of flow configuration on flame-wall interaction (FWI) of premixed flames within turbulent boundary layers has been investigated. Direct numerical simulations (DNS) of two different flow configurations for flames interacting with chemically inert isothermal and adiabatic walls in fully developed turbulent boundary layers have been performed. The first configuration is an oblique wall interaction (OWI) of a V-flame in a turbulent channel flow and the second configuration is a head-on interaction (HOI) of a planar flame in a turbulent boundary layer. These simulations are representative of stoichiometric methane-air mixture under atmospheric conditions and the non-reacting turbulence for these simulations corresponds to the friction velocity based Reynolds number of $$Re_{\tau }=110$$ R e τ = 110 . It is found that the mean wall shear stress, mean wall friction velocity and the mean velocity statistics are affected during FWI and the behaviour for these quantities varies under the different flow configurations as well as for the different thermal wall boundary conditions. The behaviour of the quenching distance and mean wall heat flux under isothermal wall conditions is found to be significantly different between the two flow configurations. The variation of the non-dimensional temperature in wall units for cases with isothermal walls suggests that the temperature in the log-layer region is significantly altered by the evolving wall heat flux in both flow configurations. Statistics of the mean Reynolds stresses and turbulence dissipation rate show that the flame significantly alters the behaviour of turbulence due to thermal expansion effects and flow configuration plays an important role.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3