Period-2 Thermoacoustics in a Swirl-Stabilised Partially Premixed Flame Computed Using Large Eddy Simulation

Author:

Kumar Ankit D.,Massey James C.,Stöhr Michael,Meier Wolfgang,Swaminathan Nedunchezhian

Abstract

AbstractA partially premixed swirl-stabilised flame under thermoacoustically unstable conditions is studied using large eddy simulation with an unstrained flamelet model for the filtered reaction rate. The simulation results agree well with measured statistics of velocity, temperature and mixture fraction. Two thermoacoustic modes at approximately 300 and 590 Hz are excited for the case studied. The second mode pressure amplitude is comparable to that of the first mode. However, the second mode of heat release rate fluctuations is not as significant as for the pressure which results in a 2:1 frequency locking behaviour. The analysis offers insights into the physical mechanism involved in the excitation of the two modes and the 2:1 frequency locking behaviour. The index based on the Rayleigh Criterion in frequency domain is analysed to understand the coupling between the heat release rate and pressure fluctuations. It is observed that there is a nonlinear interaction between the two modes resulting in energy exchange across the two modes. The conventional Rayleigh Index has limitations in explaining the observed dynamics and therefore, a modified Rayleigh Index is defined to understand the effects of nonlinear mode interactions on thermoacoustic characteristics. A mode shape analysis using LES and acoustic-modelling reveals that the first mode may be a Helmholtz mode with internal damping that is excited by an acoustic source, and the second mode has the characteristic shape of a chamber mode.

Funder

Cambridge Trust

Mitsubishi Heavy Industries

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3