Drag Assessment for Boundary Layer Control Schemes with Mass Injection

Author:

Fahland Georg,Atzori Marco,Frede Annika,Stroh Alexander,Frohnapfel Bettina,Gatti Davide

Abstract

AbstractThe present study considers uniform blowing in turbulent boundary layers as active flow control scheme for drag reduction on airfoils. The focus lies on the important question of how to quantify the drag reduction potential of this control scheme correctly. It is demonstrated that mass injection causes the body drag (the drag resulting from the stresses on the body) to differ from the wake survey drag (the momentum deficit in the wake of an airfoil), which is classically used in experiments as a surrogate for the former. This difference is related to the boundary layer control (BLC) penalty, an unavoidable drag portion which reflects the effort of a mass-injecting boundary layer control scheme. This is independent of how the control is implemented. With an integral momentum budget, we show that for the present control scheme, the wake survey drag contains the BLC penalty and is thus a measure for the inclusive drag of the airfoil, i.e. the one required to determine net drag reduction. The concept of the inclusive drag is extended also to boundary layers using the von Kàrmàn equation. This means that with mass injection the friction drag only is not sufficient to assess drag reduction also in canonical flows. Large Eddy Simulations and Reynolds-averaged Navier–Stokes simulations of the flow around airfoils are utilized to demonstrate the significance of this distinction for the scheme of uniform blowing. When the inclusive drag is properly accounted for, control scenarios previously considered to yield drag reduction actually show drag increase.

Funder

Elisabeth and Friedrich Boysen Foundation

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerodynamic characteristics of a delta wing aircraft under ground effect;Frontiers in Mechanical Engineering;2024-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3