Author:
Rondeaux Erwan,Poubeau Adèle,Angelberger Christian,Munoz Zuniga Miguel,Aubagnac-Karkar Damien,Paoli Roberto
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org
2. Amarloo, A., Cinnella, P., Iosifidis, A., et al.: Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector. Phys. Fluids 35(7), 075154 (2023). https://doi.org/10.1063/5.0160977
3. Aubagnac-Karkar, D., Mehl, C.: NNICE: neural network inference in C made easy (2023). https://doi.org/10.5281/zenodo.7645515, https://github.com/aubagnacd/NNICE
4. Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven les closure models. J. Comput. Phys. 398, 108910 (2019)
5. Billard, F., Laurence, D., Osman, K.: Adaptive wall functions for an elliptic blending eddy viscosity model applicable to any mesh topology. Flow Turbul. Combust. 94, 817–842 (2015). https://doi.org/10.1007/s10494-015-9600-x