Stability criteria for Bayesian calibration of reservoir sedimentation models

Author:

Mouris KilianORCID,Acuna Espinoza EduardoORCID,Schwindt SebastianORCID,Mohammadi FaridORCID,Haun StefanORCID,Wieprecht SilkeORCID,Oladyshkin SergeyORCID

Abstract

AbstractModeling reservoir sedimentation is particularly challenging due to the simultaneous simulation of shallow shores, tributary deltas, and deep waters. The shallow upstream parts of reservoirs, where deltaic avulsion and erosion processes occur, compete with the validity of modeling assumptions used to simulate the deposition of fine sediments in deep waters. We investigate how complex numerical models can be calibrated to accurately predict reservoir sedimentation in the presence of competing model simplifications and identify the importance of calibration parameters for prioritization in measurement campaigns. This study applies Bayesian calibration, a supervised learning technique using surrogate-assisted Bayesian inversion with a Gaussian Process Emulator to calibrate a two-dimensional (2d) hydro-morphodynamic model for simulating sedimentation processes in a reservoir in Albania. Four calibration parameters were fitted to obtain the statistically best possible simulation of bed level changes between 2016 and 2019 through two differently constraining data scenarios. One scenario included measurements from the entire upstream half of the reservoir. Another scenario only included measurements in the geospatially valid range of the numerical model. Model accuracy parameters, Bayesian model evidence, and the variability of the four calibration parameters indicate that Bayesian calibration only converges toward physically meaningful parameter combinations when the calibration nodes are in the valid range of the numerical model. The Bayesian approach also allowed for a comparison of multiple parameters and found that the dry bulk density of the deposited sediments is the most important factor for calibration.

Funder

JPI Climate

Baden-Württemberg Stiftung

Deutsche Forschungsgemeinschaft

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

Reference68 articles.

1. An Y, Yan X, Lu W et al (2022) An improved bayesian approach linked to a surrogate model for identifying groundwater pollution sources. Hydrogeol J 30:601–616. https://doi.org/10.1007/s10040-021-02411-2

2. Ardiclioglu M, Kocileri G, Kuriqi A (2011) Assessment of Sediment Transport in the Devolli River. In: 1st International Balkans Conference on Challenges of Civil Engineering

3. Audouin Y, Benson T, Delinares M et al (2020) Introducing GAIA, the brand new sediment transport module of the TELEMAC. https://doi.org/10.5281/ZENODO.3611600. -MASCARET system

4. Audouin Y, Tassi P (2020) GAIA User Manual

5. Acuna Espinoza E, Mouris K, Schwindt S, Mohammadi F (2022) Surrogate Assisted Bayesian Calibration. Version 0.1.0. https://github.com/eduardoAcunaEspinoza/surrogated_assisted_bayesian_calibration/tree/v0.1.0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3