On the condition of Setting Independence

Author:

Müller ThomasORCID,Placek TomaszORCID

Abstract

AbstractQuantum mechanics predicts non-local correlations in spatially extended entangled quantum systems, and these correlations are empirically very well confirmed. This raises philosophical questions of how nature could be that way, prompting the study of purported completions of quantum mechanics by hidden variables. Bell-type theorems connect assumptions about hidden variables with empirical predictions for the outcome of quantum correlation experiments. From among these assumptions, the Setting Independence assumption has received the least formal attention. Its violation is, however, central in the recent discussion about super-deterministic models for quantum correlation experiments. In this paper, we focus on the non-local modal correlations in the GHZ experiment. We model the introduction of hidden variables in the form of instruction sets via structure extensions in the framework of Branching Space-Times. This framework allows us to show in formal detail how the introduction of non-contextual instruction sets results in a specific violation of Setting Independence; a similar result is derived for contextual instruction sets. Our discussion provides additional reasons for foregoing the introduction of local hidden variables, and for accepting non-local quantum correlations as a resource provided by nature.

Funder

Narodowe Centrum Nauki

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Publisher

Springer Science and Business Media LLC

Subject

History and Philosophy of Science,Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3