Author:
Denis Michel,Lefevre Dominique,Thyssen Melilotus,Jenkinson Ian R.,Grégori Gérald
Abstract
AbstractThe short term (hourly scale) variability of heterotrophic prokaryote (HP) vertical distribution and respiratory activity, was investigated in the north-western (NW) Mediterranean Sea. HP vertical distribution was determined on board by flow cytometry analysis of seawater samples collected by series of CTD casts. Cell counts and viability were determined for all samples. HP respiratory rates were determined later in the laboratory from filtered seawater samples (23 dm3) from 300–1 150-m depth. The average cell viability was 94.8%±2.2% (n=240). There was no accumulation of dead cells, due to quick decay of damaged cells. In the epipelagic layer, three HP groups were distinguished, two (HNA1, HNA2) whose cells exhibited a high nucleic acid content and one (LNA) with low nucleic acid content cells. HNA2 was most populated at 50 m but not detected at 90 m and below, presumably aerobic anoxygenic photoheterotrophic bacteria (AAPs). The variability in HP abundance was mainly confined in the upper 80 m. A few secondary peaks of HP abundance were observed (80–150 m) in connection with abundance troughs in the surface layer. HP cells were continuously present in a wide layer around 500 m (mean 191×103 cells/cm3). Below this layer, HP abundance randomly exhibited peaks, coupled to respiratory rate peaks. The HP abundance and variability in the water column was suppressed during a strong wind event. The observed sporadic variability was tentatively interpreted through a pulsed carbon-export mechanism induced by the microorganism production of dissolved polysaccharides, followed by flocculation and rapid sinking. This mechanism would thus contribute to (i) preventing organic matter accumulation in the epipelagic layer, (ii) seeding the water column with live HP cells, and (iii) supplying the aphotic water column with fresh and labile organic matter. This important vertical flux mechanism needs further observations and modelling.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Oceanography
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献