Abstract
AbstractAny collection of non-blocking cubes, whose total volume does not exceed 1/3, can be packed into the unit cube.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Algebra and Number Theory
Reference6 articles.
1. Januszewski, J., Zielonka, Ł.: Packing a triangle by sequences of its non-blocking homothetic copies. Period. Math. Hung. accepted (2023a)
2. Januszewski, J., Zielonka, Ł.: Packing of non-blocking squares into the unit square, submitted (2023b)
3. Januszewski, J., Zielonka, Ł: Packing batches of items into a single bin. Inform. Process. Lett. 174, 106196 (2022). https://doi.org/10.1016/j.ipl.2021.106196
4. Januszewski, J., Zielonka, Ł: Packing batches of cubes into a single bin. Inform. Process. Lett. 180, 106337 (2023). https://doi.org/10.1016/j.ipl.2022.106337
5. Meir, A., Moser, L.: On packing of squares and cubes. J. Combin. Theory 5, 126–134 (1968)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Packing of non-blocking squares into the unit square;Colloquium Mathematicum;2024
2. Packing of non-blocking cubes into the unit cube;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2023-08-11