Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Azzollini, A.: The elliptic Kirchhoff equation in $\mathbb{R}^{N}$ perturbed by a local nonlinearity. Differ. Integral Equ. 25, 543–554 (2012)
2. Alves, C.O., Corrêa, F.J.S.A.: A sub-supersolution approach for quasilinear Kirchhoff equation. J. Math. Phys. 56, 051501 (2015)
3. Alves, C.O., Boudjeriou, T.: Existence of solution for a class of nonvariational Kirchhoff type problem via dynamical methots. Nonlinear Anal. 197, 1–17 (2020)
4. Alves, C.O., Boudjeriou, T.: Existence of solution for a class of nonlocal problem via dynamical methods. Rend. Circ. Mat. Palermo 71(2), 611–632 (2022). https://doi.org/10.1007/s12215-021-00644-4
5. Alves, C.O., Corrêa, F.J.S.A.: On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 8, 43–56 (2001)