Accounting for Heterogeneity: Mixed-Effects Models in Resting-State EEG Data in a Sample of Tinnitus Sufferers

Author:

Riha ConstanzeORCID,Güntensperger Dominik,Kleinjung Tobias,Meyer Martin

Abstract

AbstractIn neuroscience, neural oscillations and other features of brain activity recorded by electroencephalography (EEG) are typically statistically assessed on the basis of the study’s population mean to identify possible blueprints for healthy subjects, or subjects with diagnosable neurological or psychiatric disorders. Despite some inter-individual similarities, there is reason to believe that a discernible portion of the individual brain activity is subject-specific. In order to encompass the potential individual source of variance in EEG data and psychometric parameters, we introduce an innovative application of linear mixed-effects models (LMM) as an alternative procedure for the analysis of resting-state EEG data. Using LMM, individual differences can be modelled through the assumptions of idiosyncrasy of all responses and dependency among data points (e.g., from the same subject within and across units of time) via random effects parameters. This report provides an example of how LMM can be used for the statistical analysis of resting-state EEG data in a heterogeneous group of subjects; namely, people who suffer from tinnitus (ringing in the ear/s). Results from 49 participants (38 male, mean age of 46.69 ± 12.65 years) revealed that EEG signals were not only associated with specific recording sites, but exhibited regional specific oscillations in conjunction to symptom severity. Tinnitus distress targeted the frequency bands beta3 (23.5–35 Hz) and gamma (35.5–45 Hz) in right frontal regions, whereas delta (0.5–4 Hz) exhibited significant changes in temporal-parietal sources. Further, 57.8% of the total variance in EEG power was subject-specific and acknowledged by the LMM framework and its prediction. Thus, a deeper understanding of both the underlying statistical and physiological patterns of EEG data was gained.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Clinical Neurology,Neurology,Radiology Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3