Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software
Reference44 articles.
1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard Equations. SIAM J. Sci. Comput. 41(6), A3703–A3727 (2019). https://doi.org/10.1137/19M1264412
2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979). https://doi.org/10.1016/0001-6160(79)90196-2
3. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004). https://doi.org/10.1137/S0036142901396521
4. Bo, Y., Wang, Y., Cai, W.: Arbitrary high-order linearly implicit energy-preserving algorithms for Hamiltonian PDEs. arXiv:2011.08375 (2020)
5. Cahn, J..W., Hilliard, J..E.: Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献