1. Abdulle, A., Arjmand, D., Paganoni, E.: Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems. C. R. Math. Acad. des Sci. 357(6), 545–551 (2019). https://doi.org/10.1016/j.crma.2019.05.011
2. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E.M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc Web page. https://petsc.org/ (2022)
3. Berbenni, S., Taupin, V., Djaka, K.S., Fressengeas, C.: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics. Int. J. Solids Struct. 51(23–24), 4157–4175 (2014). https://doi.org/10.1016/j.ijsolstr.2014.08.009
4. Bernardi, C., Girault, V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35(5), 1893–1916 (1998). https://doi.org/10.1137/S0036142995293766
5. Brenner, R.: Numerical computation of the response of piezoelectric composites using Fourier transform. Phys. Rev. B 79, 184106 (2009). https://doi.org/10.1103/PhysRevB.79.184106