Rational Krylov for Stieltjes matrix functions: convergence and pole selection

Author:

Massei StefanoORCID,Robol Leonardo

Abstract

AbstractEvaluating the action of a matrix function on a vector, that is $$x=f({\mathcal {M}})v$$ x = f ( M ) v , is an ubiquitous task in applications. When $${\mathcal {M}}$$ M  is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating x when f(z) is either Cauchy–Stieltjes or Laplace–Stieltjes (or, which is equivalent, completely monotonic) and $${\mathcal {M}}$$ M  is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case $${\mathcal {M}}=I \otimes A - B^T \otimes I$$ M = I A - B T I , and v obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of x. Pole selection strategies with explicit convergence bounds are given also in this case.

Funder

Eindhoven University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational aspects of the geometric mean of two matrices: a survey;Acta Scientiarum Mathematicarum;2024-09-04

2. Error bounds for the approximation of matrix functions with rational Krylov methods;Numerical Linear Algebra with Applications;2024-07

3. Fast numerical computation on the harmonic Arnoldi algorithm for large-scale φ functions;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

4. Adaptive Rational Krylov Methods for Exponential Runge–Kutta Integrators;SIAM Journal on Matrix Analysis and Applications;2024-03-05

5. A nested divide-and-conquer method for tensor Sylvester equations with positive definite hierarchically semiseparable coefficients;IMA Journal of Numerical Analysis;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3