Scaling Effect on the Behaviour and Design of Prestressed Stayed Steel Columns

Author:

Hyman Peter,Osofero Adelaja I.ORCID,Sriramula Srinivas

Abstract

AbstractThis study presents the results of a small-scale experimental campaign on prestressed stayed steel columns, subsequent numerical model validation and design guideline development. The majority of previous experimental studies have focused on large-scale systems, which are expensive and can be difficult to perform due to the required specialised experimental set-up, whereas small-scale experiments are less restrictive with both space and experimental set-up requirements. Also, existing design guidelines were developed from a single system scale, so have not been shown to be applicable to changes in geometric scale. Thus, the scaling effect on prestressed stayed steel columns was investigated to promote the use of small-scale experiments in the study of large-scale prestressed stayed steel column systems and update design guidelines for change in geometric scale. A total of 17 prestressed stayed steel columns and a control column with no cross-arms were tested. These tests investigated the symmetric and antisymmetric buckling behaviour as well as the interactive post-buckling phenomenon. These tests were designed to investigate the scaling effect on the behaviour of the system and to determine the optimal prestress level of prestressed stayed steel columns close to the transition point. A numerical model was also validated by the experimental results to perform a full geometric scaling comparison study and update existing design guidelines. It was found that small-scale structures are capable of representing the behaviour of large-scale prestressed stayed steel columns. Furthermore, it was shown that the highest efficiency in terms of the weight of materials is found close to the transition point between symmetric and antisymmetric buckling behaviour. Various scale systems were modelled numerically, and the results compared with existing guidelines, which resulted in low levels of accuracy. Therefore, existing design guidelines were updated using the validated numerical model and shown to yield more accurate results for the L/400 and L/200 imperfection levels.

Funder

engineering and physical sciences research council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Agricultural and Biological Sciences (miscellaneous),Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3