Universal Slope Sets for Upward Planar Drawings

Author:

Bekos Michael A.,Di Giacomo Emilio,Didimo Walter,Liotta Giuseppe,Montecchiani FabrizioORCID

Abstract

AbstractWe study universal sets of slopes for computing upward planar drawings of planar st-graphs. We first consider a subfamily of planar st-graphs, called bitonic st-graphs. We prove that every set $$\mathcal {S}$$ S of $$\varDelta $$ Δ slopes containing the horizontal slope is universal for 1-bend upward planar drawings of bitonic st-graphs with maximum vertex degree $$\varDelta $$ Δ , i.e., every such digraph admits a 1-bend upward planar drawing whose edge segments use only slopes in $$\mathcal {S}$$ S . This result is worst-case optimal in terms of number of slopes, and, for a suitable choice of $$\mathcal {S}$$ S , it gives rise to drawings with worst-case optimal angular resolution. We then prove that every such set $$\mathcal {S}$$ S can be used to construct 2-bend upward planar drawings of n-vertex planar st-graphs with at most $$4n-9$$ 4 n - 9 bends in total.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3