Efficient Computation of Sequence Mappability

Author:

Charalampopoulos Panagiotis,Iliopoulos Costas S.,Kociumaka Tomasz,Pissis Solon P.,Radoszewski JakubORCID,Straszyński JuliuszORCID

Abstract

AbstractSequence mappability is an important task in genome resequencing. In the (km)-mappability problem, for a given sequence T of length n, the goal is to compute a table whose ith entry is the number of indices $$j \ne i$$ j i such that the length-m substrings of T starting at positions i and j have at most k mismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of $$k=1$$ k = 1 . We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for $$k=O(1)$$ k = O ( 1 ) , works in $$O(n)$$ O ( n ) space and, with high probability, in $$O(n \cdot \min \{m^k,\log ^k n\})$$ O ( n · min { m k , log k n } ) time. Our algorithm requires a careful adaptation of the k-errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop $$O(n^2)$$ O ( n 2 ) -time algorithms to compute all (km)-mappability tables for a fixed m and all $$k\in \{0,\ldots ,m\}$$ k { 0 , , m } or a fixed k and all $$m\in \{k,\ldots ,n\}$$ m { k , , n } . Finally, we show that, for $$k,m = \Theta (\log n)$$ k , m = Θ ( log n ) , the (km)-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.

Funder

Fundacja na rzecz Nauki Polskiej

Horizon 2020

Israel Science Foundation

National Science Foundation

Alfred P. Sloan Foundation

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference35 articles.

1. Alamro, H., Ayad, L.A.K., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P.: Longest common prefixes with $$k$$-mismatches and applications. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) 44th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2018, LNCS, vol. 10706, pp. 636–649. Springer (2018). https://doi.org/10.1007/978-3-319-73117-9_45

2. Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Kociumaka, T., Pissis, S.P., Radoszewski, J., Straszyński, J.: Efficient computation of sequence mappability. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) 25th International Symposium on String Processing and Information Retrieval, SPIRE 2018, LNCS, vol. 11147, pp. 12–26. Springer (2018). https://doi.org/10.1007/978-3-030-00479-8_2

3. Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P., Radoszewski, J., Sung, W.: Faster algorithms for 1-mappability of a sequence. Theor. Comput. Sci. 812, 2–12 (2020). https://doi.org/10.1016/j.tcs.2019.04.026

4. Amir, A., Boneh, I., Kondratovsky, E.: The k-mappability problem revisited. In: Gawrychowski, P., Starikovskaya, T. (eds.) 32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, LIPIcs, vol. 191, pp. 5:1–5:20. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CPM.2021.5

5. Antoniou, P., Daykin, J.W., Iliopoulos, C.S., Kourie, D., Mouchard, L., Pissis, S.P.: Mapping uniquely occurring short sequences derived from high throughput technologies to a reference genome. In: 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009, pp. 1–4. IEEE (2009). https://doi.org/10.1109/itab.2009.5394394

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3