Near-Optimal Quantum Algorithms for String Problems

Author:

Akmal Shyan,Jin Ce

Abstract

AbstractWe study quantum algorithms for several fundamental string problems, including Longest Common Substring, Lexicographically Minimal String Rotation, and Longest Square Substring. These problems have been widely studied in the stringology literature since the 1970s, and are known to be solvable by near-linear time classical algorithms. In this work, we give quantum algorithms for these problems with near-optimal query complexities and time complexities. Specifically, we show that: Longest Common Substring can be solved by a quantum algorithm in $$\tilde{O}(n^{2/3})$$ O ~ ( n 2 / 3 ) time, improving upon the recent $$\tilde{O}(n^{5/6})$$ O ~ ( n 5 / 6 ) -time algorithm by Le Gall and Seddighin (in: Proceedings of the 13th innovations in theoretical computer science conference (ITCS 2022), pp 97:1–97:23, 2022. https://doi.org/10.4230/LIPIcs.ITCS.2022.97). Our algorithm uses the MNRS quantum walk framework, together with a careful combination of string synchronizing sets (Kempa and Kociumaka, in: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing (STOC 2019), ACM, pp 756–767, 2019. https://doi.org/10.1145/3313276.3316368) and generalized difference covers. Lexicographically Minimal String Rotation can be solved by a quantum algorithm in $$n^{1/2 + o(1)}$$ n 1 / 2 + o ( 1 ) time, improving upon the recent $$\tilde{O}(n^{3/4})$$ O ~ ( n 3 / 4 ) -time algorithm by Wang and Ying (in: Quantum algorithm for lexicographically minimal string rotation. CoRR, 2020. arXiv:2012.09376). We design our algorithm by first giving a new classical divide-and-conquer algorithm in near-linear time based on exclusion rules, and then speeding it up quadratically using nested Grover search and quantum minimum finding. Longest Square Substring can be solved by a quantum algorithm in $$\tilde{O}(\sqrt{n})$$ O ~ ( n ) time. Our algorithm is an adaptation of the algorithm by Le Gall and Seddighin (2022) for the Longest Palindromic Substring problem, but uses additional techniques to overcome the difficulty that binary search no longer applies. Our techniques naturally extend to other related string problems, such as Longest Repeated Substring, Longest Lyndon Substring, and Minimal Suffix.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Speed-Ups for String Synchronizing Sets, Longest Common Substring, and k -mismatch Matching;ACM Transactions on Algorithms;2024-08-05

2. On the Communication Complexity of Approximate Pattern Matching;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3