Quantum K-theory of incidence varieties

Author:

Xu WeihongORCID

Abstract

AbstractWe prove a conjecture of Buch and Mihalcea in the case of the incidence variety $$X=\textrm{Fl}\hspace{0.55542pt}(1,n-1;n)$$ X = Fl ( 1 , n - 1 ; n ) and determine the structure of its (T-equivariant) quantum K-theory ring. Our results are an interplay between geometry and combinatorics. The geometric side concerns Gromov–Witten varieties of 3-pointed genus 0 stable maps to X with markings sent to Schubert varieties, while on the combinatorial side are formulas for the (equivariant) quantum K-theory ring of X. We prove that the Gromov–Witten variety is rationally connected when one of the defining Schubert varieties is a divisor and another is a point. This implies that the (equivariant) K-theoretic Gromov–Witten invariants defined by two Schubert classes and a Schubert divisor class can be computed in the ordinary (equivariant) K-theory ring of X. We derive a positive Chevalley formula for the equivariant quantum K-theory ring of X and a positive closed formula for Littlewood–Richardson coefficients in the non-equivariant quantum K-theory ring of X. The Littlewood–Richardson rule in turn implies that non-empty Gromov–Witten varieties given by Schubert varieties in general position have arithmetic genus 0.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3