Author:
Kishimoto Daisuke,Membrillo-Solis Ingrid,Theriault Stephen
Abstract
AbstractThe homotopy types of gauge groups of principal $$\mathrm{SO}(4)$$
SO
(
4
)
-bundles over $$S^{4}$$
S
4
are classified p-locally for every prime p, and partial results are obtained integrally. The method generalizes to deal with any quotient of the form $$(S^{3})^{n}/Z$$
(
S
3
)
n
/
Z
where Z is a subgroup generated by $$(-1,\ldots ,-1)$$
(
-
1
,
…
,
-
1
)
.
Funder
Japan Society for the Promotion of Science
Engineering and Physical Sciences Research Council
Leverhulme Trust
Publisher
Springer Science and Business Media LLC
Reference11 articles.
1. Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)
2. Crabb, M.C., Sutherland, W.A.: Counting homotopy types of gauge groups. Proc. London Math. Soc. 81(3), 747–768 (2000)
3. Cutler, T.: The homotopy types of $$U(n)$$-gauge groups over $$S^{4}$$ and $$\mathbb{C}P^{2}$$. Homology, Homot. Appl. 20(1), 5–36 (2018)
4. Gottlieb, D.H.: Applications of bundle map theory. Trans. Amer. Math. Soc. 171, 23–50 (1972)
5. Hasui, S., Kishimoto, D., Kono, A., Sato, T.: The homotopy types of $${\rm PU}(3)$$ and $${\rm PSp}(2)$$-gauge groups. Algebr. Geom. Topol. 16(3), 1813–1825 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献