1. Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Algebra 29(2), 330–348 (1974)
2. Bauer, I., Catanese, F., Frapporti, D.: The fundamental group and torsion group of Beauville surfaces. In: Bauer, I., Garion, S., Vdovina, A. (eds.) Beauville Surfaces and Groups. Springer Proceedings in Mathematics and Statistics, vol. 123, pp. 1–14. Springer, Cham (2015).
http://arxiv.org/abs/1402.2109
3. Bogomolov, F., Husemöller, D.: Geometric properties of curves defined over number fields. MPI preprint (2000–2001).
http://www.mpim-bonn.mpg.de/preprints
4. Bogomolov, F., Tschinkel, Yu.: Unramified correspondences. In: Vostokov, S., Zarhin, Yu. (eds.) Algebraic Number Theory and Algebraic Geometry. Contemporary Mathematics, vol. 300, pp. 17–25. American Mathematical Society, Providence (2002).
http://arxiv.org/abs/math/0202223
5. Bogomolov, F., Tschinkel, Yu.: On curve correspondences. In: Communications in Arithmetic Fundamental Groups. Sūrikaisekikenkyūsho Kōkyūroku, vol. 1267, pp. 157–166. Kyoto University, Kyoto (2002).
http://www.math.nyu.edu/~tschinke/papers/yuri/02genram/genram.pdf