Abstract
AbstractBring’s curve, the unique Riemann surface of genus 4 with automorphism group $$S_5$$
S
5
, has many exceptional properties. We review, give new proofs of, and extend a number of these including giving the complete realisation of the automorphism group for a plane curve model, identifying a new elliptic quotient of the curve and the modular curve $$X_0(50)$$
X
0
(
50
)
, providing a complete description of the orbit decomposition of the theta characteristics, and identifying the unique invariant characteristic with the divisor of the Szegő kernel. In achieving this we have used modern computational tools in Sagemath, Macaulay2, and Maple, for which notebooks demonstrating calculations are provided.
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Adamchik, V., Jeffrey, D.J.: Polynomial transformations of Tschirnhaus, Bring and Jarrard. ACM SIGSAM Bull. 37(3), 90–94 (2003)
2. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Vol. I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)
3. Atiyah, M.F.: Riemann surfaces and spin structures. Ann. Sci. Éc. Norm. Super. 4(1), 47–62 (1971)
4. Baker, A., Wüstholz, G.: Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs, vol. 9. Cambridge University Press, Cambridge (2007)
5. Bell, A.M.: Hilbert Modular Surfaces and Uniformizing Groups of Klein Invariants. PhD Thesis, Oregon State University (2004)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献