1. Arnold, D.L.: Classifying Spaces of Symmetric Groups and Wreath Products. Ph.D. Thesis, Western Michigan University. ProQuest LLC, Ann Arbor (2013). http://gateway.proquest.com/openurl?url_ver=Z39.88-2004 &rft_v al_fmt=info:ofi/fmt:kev:mtx:dissertation &res_dat=xri:pqm &rft_dat=xri:pqdiss:35 79399
2. Berenstein, A., Zamora, R.: Isometry groups of Borel randomizations. Notre Dame J. Form. Log. 61(2), 297–316 (2020)
3. Bhattacharjee, M., Macpherson, D., Möller, R.G., Neumann, P.M.: Notes on Infinite Permutation Groups. Texts and Readings in Mathematics, vol. 12. Lecture Notes in Mathematics, vol. 1698. Springer, Berlin (1997)
4. Brown, R.: Topology and Groupoids, 3rd edn. BookSurge, LLC, Charleston (2006)
5. Brude, J., Sasyk, R.: Metric approximations of unrestricted wreath products when the acting group is amenable. Comm. Algebra 50(3), 949–961 (2022)