SETDB1 deletion causes DNA demethylation and upregulation of multiple zinc-finger genes

Author:

Kang Yong-Kook,Eom Jaemin,Min Byungkuk,Park Jung Sun

Abstract

Abstract Background SETDB1 (SET domain bifurcated-1) is a histone H3-lysine 9 (H3K9)-specific methyltransferase that mediates heterochromatin formation and repression of target genes. Despite the assumed functional link between DNA methylation and SETDB1-mediated H3K9 trimethylations, several studies have shown that SETDB1 operates autonomously of DNA methylation in a region- and cell-specific manner. This study analyzes SETDB1-null HAP1 cells through a linked methylome and transcriptome analysis, intending to explore genes controlled by SETDB1-involved DNA methylation. Methods and results We investigated SETDB1-mediated regulation of DNA methylation and gene transcription in human HAP1 cells using reduced-representation bisulfite sequencing (RRBS) and RNA sequencing. While two-thirds of differentially methylated CpGs (DMCs) in genic regions were hypomethylated in SETDB1-null cells, we detected a plethora of C2H2-type zinc-finger protein genes (C2H2-ZFP, 223 of 749) among the DMC-associated genes. Most C2H2-ZFPs with DMCs in their promoters were found hypomethylated in SETDB1-KO cells, while other non-ZFP genes with promoter DMCs were not. These C2H2-ZFPs with DMCs in their promoters were significantly upregulated in SETDB1-KO cells. Similarly, C2H2-ZFP genes were upregulated in SETDB1-null 293T cells, suggesting that SETDB1’s function in ZFP gene repression is widespread. There are several C2H2-ZFP gene clusters on chromosome 19, which were selectively hypomethylated in SETDB1-KO cells. Conclusions SETDB1 collectively and specifically represses a substantial fraction of the C2H2-ZFP gene family. Through the en-bloc silencing of a set of ZFP genes, SETDB1 may help establish a panel of ZFP proteins that are expressed cell-type specifically and thereby can serve as signature proteins for cellular identity.

Funder

National Research Foundation of Korea

National Research Council of Science and Technology

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3