Towards a Precision Model for Environmental Public Health: Wastewater-based Epidemiology to Assess Population-level Exposures and Related Diseases

Author:

Bowes Devin A.ORCID

Abstract

Abstract Purpose of Review Impacts from climate change and use of toxic chemicals that contaminate our environment continue to pose a threat to the health of human populations. The field of wastewater-based epidemiology (WBE) has evolved significantly in recent years due to the COVID-19 global pandemic, however, investigating the utility of this application to fit within a broader environmental public health framework remains relatively unexplored. This review offers a comprehensive summary of the historical progression of WBE and highlights recent notable advancements to support its use for assessing environmental exposures in human populations. Recent Findings Early pioneering studies confirmed feasibility of this application, including measuring pesticides, plasticizers, and flame retardants in influent wastewater, that offered foundational knowledge to support successful expansion in recent work, including exposure to heavy metals and mycotoxins. Collectively, it was identified that evaluating biomarker suitability (e.g., in-sewer degradation, specificity) and pharmacokinetic data of excreted metabolites are crucial for accurate interpretation of results. Additionally, measurements of contaminants differed between catchment areas, indicating disproportionate exposures across populations. Summary The use of WBE offers a near real-time approach to address public health priorities, with strong evidence suggesting it can be applied to generate population-level environmental exposure assessments. Research gaps such as biomarker selection, near real-time intervention efficacy assessment, and data analysis approaches are identified in this review and encouraged to be addressed in future work, informing key areas to support the use of WBE towards a precision-based model for environmental public health.

Funder

Common Fund

University of South Carolina

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3