A New Moho Depth Model for Fennoscandia with Special Correction for the Glacial Isostatic Effect

Author:

Abrehdary M.,Sjöberg L. E.

Abstract

AbstractIn this study, we present a new Moho depth model in Fennoscandia and its surroundings. The model is tailored from data sets of XGM2019e gravitationl field, Earth2014 topography and seismic crustal model CRUST1.0 using the Vening Meinesz-Moritz model based on isostatic theory to a resolution of 1° × 1°. To that end, the refined Bouguer gravity disturbance is determined by reducing the observed field for gravity effect of topography, density heterogeneities related to bathymetry, ice, sediments, and other crustal components. Moreover, stripping of non-isostatic effects of gravity signals from mass anomalies below the crust due to crustal thickening/thinning, thermal expansion of the mantle, Delayed Glacial Isostatic Adjustment (DGIA), i.e., the effect of future GIA, and plate flexure has also been performed. As Fennoscandia is a key area for GIA research, we particularly investigate the DGIA effect on the gravity disturbance and gravimetric Moho depth determination in this area. One may ask whether the DGIA effect is sufficiently well removed in the application of the general non-isostatic effects in such an area, and to answer this question, the Moho depth is determined both with and without specific removal of the DGIA effect prior to non-isostatic effect and Moho depth determinations. The numerical results yield that the RMS difference of the Moho depth from our model HVMD19 vs. the seismic CRUST19 and GRAD09 models are 3.8/4.2 km and 3.7/4.0 km when the above strategy for removing the DGIA effect is/is not applied, respectively, and the mean value differences are 1.2/1.4 km and 0.98/1.4 km, respectively. Hence, our study shows that the specific correction for the DGIA effect on gravity disturbance is slightly significant, resulting in individual changes in the gravimetric Moho depth up to − 1.3 km towards the seismic results. On the other hand, our study shows large discrepancies between gravimetric and seismic Moho models along the Norwegian coastline, which might be due to uncompensated non-isostatic effects caused by tectonic motions.

Funder

Swedish National Space Agency

University West

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3