Stress State in the Source Region of Mw2.2 Earthquake in a Deep Gold Mine in South Africa Determined from Borehole Cores

Author:

Yabe YasuoORCID,Abe Shuhei,Hofmann Gerhard,Roberts Dave,Yilmaz Halil,Ogasawara Hiroshi,Ito Takatoshi,Funato Akio,Nakatani Masao,Naoi Makoto,Durrheim Raymond

Abstract

AbstractIn December 2007, an Mw2.2 earthquake occurred in a gabbroic dike at 3.3 km depth in a deep gold mine in South Africa. The fore- and aftershock activity was analyzed in an effort to understand the preparation and generation processes of earthquakes; these findings have already been published. The present paper focuses on the stress state in the source region of the mainshock. A 90-m-long borehole across the mainshock fault was drilled ~ 1.5 years after the mainshock and logged by an optical televiewer. The fault can be identified by severe damage to the borehole wall at the point where the borehole intersected the aftershock cluster. Except for a 10-m section in the hanging wall of the fault, borehole cores were fully recovered. Borehole breakout (BO) and core disking (CD) were found to occur. Two stress measurement techniques [Deformation Rate Analysis (DRA) and Diametrical Core Deformation Analysis (DCDA)] were applied to the borehole cores. By combining their results with occurrence criteria for BO and CD, the principal stress state in the source region of the mainshock was determined. The principal directions in the hanging wall of the fault were nearly identical to the virgin stress state, while it was significantly disturbed in the footwall. The vertical stresses were 106 MPa and 40 MPa in the hanging wall and footwall, respectively. The significant difference in the vertical stress between the two sides of the fault can be explained by the stress redistribution associated with a nonuniform slip on a nonplanar fault.

Funder

International Continental Drilling Project

JSPS-NRF bilateral research project

SATREPS

Grant-in-Aid for Science and Research

Earthquake Research Institute cooperative research program

JSPS Core-to-Core program

Tohoku University’s 21st Century COE program

Ritsumeikan University

the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Earthquake and Volcano Hazards Observation and Research Program

the DST-NRF South African Research Chair Initiative

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3