Gravity Field Recovery and Error Analysis for the MOCASS Mission Proposal Based on Cold Atom Interferometry

Author:

Reguzzoni MirkoORCID,Migliaccio FedericaORCID,Batsukh KhulanORCID

Abstract

AbstractSatellite missions providing data for a continuous monitoring of the Earth gravity field and its changes are fundamental to study climate changes, hydrology, sea level changes, and solid Earth phenomena. GRACE-FO (Gravity Recovery and Climate Experiment Follow-On) mission was launched in 2018 and NGGM (Next Generation Gravity Mission) studies are ongoing for the long-term monitoring of the time-variable gravity field. In recent years, an innovative mission concept for gravity measurements has also emerged, exploiting a spaceborne gravity gradio-meter based on cold atom interferometers. In particular, a team of researchers from Italian universities and research institutions has proposed a mission concept called MOCASS (Mass Observation with Cold Atom Sensors in Space) and conducted the study to investigate the performance of a cold atom gradiometer on board a low Earth orbiter and its impact on the modeling of different geophysical phenomena. This paper presents the analysis of the gravity gradient data attainable by such a mission. Firstly, the mathematical model for the MOCASS data processing will be described. Then numerical simulations will be presented, considering different satellite orbital altitudes, pointing modes and instrument configurations (single-arm and double-arm); overall, data were simulated for twenty different observation scenarios. Finally, the simulation results will be illustrated, showing the applicability of the proposed concept and the improvement in modeling the static gravity field with respect to GOCE (Gravity Field and Steady-State Ocean Circulation Explorer).

Funder

Agenzia Spaziale Italiana

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3