Stratospheric Gravity Waves Impact on Infrasound Transmission Losses Across the International Monitoring System

Author:

Listowski C.,Stephan C. C.,Le Pichon A.,Hauchecorne A.,Kim Y.-H.,Achatz U.,Bölöni G.

Abstract

AbstractThe international monitoring system (IMS) has been put in place to monitor compliance with the comprehensive nuclear-test-ban treaty (CTBT). Its infrasound component, dedicated to the monitoring of atmospheric events, gives also room to civil applications (e.g. monitoring of volcanic eruptions, meteorites, severe weather). Infrasound detection capabilities are largely determined by the state of the middle atmosphere. This requires an accurate knowledge of the atmospheric processes at play. More particularly internal gravity waves (GW) pose a challenge to atmospheric modelling because of unresolved processes. Using high-resolution simulation outputs over winter 2020 (20 January–1 March) we present a method to assess the impact of GW on infrasound surface transmission losses across the IMS. We validate the method by comparing simulated GW perturbations to GW lidar observations at Observatoire de Haute-Provence in France, and satellite-based GW energy estimations globally. We perform propagation simulations using atmospheric specifications where GW are filtered out and kept in, respectively. We demonstrate that the largest impact of GW across the IMS is not where GW activity is the largest, but rather where GW activity combines with infrasound waveguides not firmly set in a given direction. In northern winter, the largest variations of transmission losses at 1 Hz due to GW occur in the southern (summer) hemisphere in the direction of the main guide (westward propagation), with average values ranging between 10 and 25 dB in the first shadow zone. It corresponds to an average signal amplification of at least a factor 5 to 15, while this amplification is around 2 to 5 for the main guide in the northern winter hemisphere (eastward propagation).

Funder

Minerva Fast Track Program of the Max Planck Society

German Federal Ministry of Education and Research

German Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3