A comparison between the finite element method and a kinematic model derived from robot swarms for first and second gradient continua

Author:

dell’Erba RamiroORCID,D’Avanzo P.,Rapisarda A. C.

Abstract

AbstractIn this paper, we consider a deformable continuous medium and its discrete representation realized by a lattice of points. The former is solved using the classical variational formulation with the finite element method. The latter, a 2D discrete “kinematic” model, instead is conceived to determine the displacements of the lattice points depending on interaction rules among them and thus provides the final configuration of the system. The kinematic model assigns the displacements of some points, so-called leaders, by solving Newton’s law; the other points, namely followers, are left to rearrange themselves according to the lattice structure and the flocking rules. These rules are derived from the effort to describe the behaviour of a robot swarm as a single whole organism. The advantage of the kinematic model lies in reducing computational cost and the easiness of managing complicated structures and fracture phenomena. In addition, generalizing the discrete model to non-local interactions, such as for second gradient materials, is easier than solving partial differential equations. This paper aims to compare and discuss the deformed configurations obtained by these two approaches. The comparison between FEM and the kinematic model shows a reasonable agreement even in the case of large deformations for the standard case of the first gradient continuum.

Funder

Ente per le Nuove Tecnologie, l’Energia e l’Ambiente

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3